GCE Examinations

Advanced Subsidiary / Advanced Level

Statistics

Module S1

Paper I

MARKING GUIDE

Abstract

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

S1 Paper I - Marking Guide

1. (a) (i) normal

A1
B1
(b) (i) discrete uniform A1
(ii)

x	1	2	3	4
$\mathrm{P}(X=x)$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

mean $=\frac{5}{2}$ (symmetry)
$\mathrm{E}\left(X^{2}\right)=\sum x^{2} \mathrm{P}(x)=\frac{1}{4}+1+\frac{9}{4}+4=\frac{15}{2}$ A1
$\operatorname{Var}(X)=\frac{15}{2}-\left(\frac{5}{2}\right)^{2}=\frac{5}{4}$
M1 A1
M1 A1
2. (a) $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)=2 \mathrm{P}(B) \times \mathrm{P}(B)=2[\mathrm{P}(B)]^{2}$

M2
$\therefore 2[\mathrm{P}(B)]^{2}=\frac{1}{8} ; \therefore[\mathrm{P}(B)]^{2}=\frac{1}{16} ; \therefore \mathrm{P}(B)=\frac{1}{4}$
M2 A1
(b) $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)=\frac{1}{2}+\frac{1}{4}-\frac{1}{8}=\frac{5}{8}$

M2 A1
(c) A and B independent $\therefore A$ and B^{\prime} independent
$\therefore \mathrm{P}\left(A \mid B^{\prime}\right)=\mathrm{P}(A)=\frac{1}{2} \quad$ M1 A1
3. (a)
$12.7+5.8=18.5$ minutes

A1

(b) $\mathrm{P}(X<12.7)=0.25 ; \mathrm{P}\left(Z<\frac{12.7-\mu}{\sigma}\right)=0.25$ M1
$\frac{12.7-\mu}{\sigma}={ }^{-} 0.67 ; 12.7-\mu={ }^{-} 0.67 \sigma$
M1 A1
$\mathrm{P}(X<18.5)=0.75 ; \mathrm{P}\left(Z<\frac{18.5-\mu}{\sigma}\right)=0.75$
M1
$\frac{18.5-\mu}{\sigma}=0.67 ; 18.5-\mu=0.67 \sigma$
M1 A1
solve simul. giving $\mu=15.6, \sigma=4.3284$; so $\mu=15.6, \sigma^{2}=18.7 \quad$ M1 A1
(c) e.g. would expect normal dist. and mean and variance seem close to actual values so seems a fairly suitable model

B2
4. (a) median $=15.5^{\text {th }}=\frac{31+32}{2}=31.5$

M1 A1
$\mathrm{Q}_{1}=7.75^{\mathrm{th}}=20$
A1
$\mathrm{Q}_{3}=23.25^{\text {th }}=45.5$
A1
(b)

$\begin{array}{lllllllll}0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80\end{array}$
B3
(c)

B3
(d) e.g. similar range, youngest and oldest both a bit higher for E median of M lower meaning younger students on average IQR of M smaller meaning student ages more similar E roughly symmetrical, $M+$ vely skewed
5. (a) $(0.6 \times 0.5 \times 0.7)+(0.6 \times 0.5 \times 0.3)+(0.4 \times 0.5 \times 0.3)=0.36$
(b) $\mathrm{P}(W=0)=0.4 \times 0.5 \times 0.7=0.14$
$\mathrm{P}(W=3)=0.6 \times 0.5 \times 0.3=0.09$
$\mathrm{P}(W=1)=1-(0.14+0.36+0.09)=0.41$

w	0	1	2	3
$\mathrm{P}(W=w)$	0.14	0.41	0.36	0.09

M2 A2
(c) $\mathrm{E}(W)=\sum w \mathrm{P}(w)=0+0.41+0.72+0.27=1.4$

M1 A1
M1 A1
$\mathrm{E}\left(W^{2}\right)=\sum w^{2} \mathrm{P}(w)=0+0.41+1.44+0.81=2.66$
M1 A1
(d) e.g. unlikely to be valid as result of each match will probably raise or lower confidence changing probability of success in the next match B2
6.
(a)
A (\%)

B4
-8
-4
0
4
8
$T\left({ }^{\circ} \mathrm{C}\right)$
(b) $S_{T T}=137-\frac{7^{2}}{10}=132.1$
$S_{A A}=2172.66-\frac{143.8^{2}}{10}=104.816$
M1
$S_{T A}=20.7-\frac{7 \times 143.8}{10}={ }^{-} 79.96$
$r=\frac{-79.96}{\sqrt{132.1 \times 104.816}}={ }^{-} 0.6795$
M1
e.g. fairly strong -ve correlation so belief seems reasonable
M1 A1
(c) $\quad q=\frac{-79.96}{132.1}={ }^{-} 0.60530$
M1 A1
$p=\frac{143.8}{10}-\left({ }^{-} 0.60530 \times \frac{7}{10}\right)=14.804$
M1 A1
$A=14.8-0.605 T$
(d) line on graph above
B2
(16)

Performance Record - S1 Paper I

Question no.	1	2	3	4	5	6	Total
Topic(s)	modelling, discrete uniform dist.	probability	normal dist.	stem \& leaf, quartiles, boxplot	$\begin{aligned} & \hline \text { discrete } \\ & \text { r. v. } \end{aligned}$	scatter diagram, pmcc, regression	
Marks	8	10	11	14	16	16	75
Student							
						-	

